Nov 26, 2024

Project Report

Names: Adin Mauer (43514439), Sikher Sinha (23422355), Weifeng Ke (18879288)

Abstract

This project focuses on developing a machine learning model that can analyze and classify
electroencephalogram (EEG) signals recorded from human subjects performing or imagining specific motor
movements with their fists or feet. This kind of task is critical for advancing brain-computer interface (BCI)
applications. The dataset used for this study is publicly available from OpenNeuro
(https://openneuro.org/datasets/ds004362/versions/1.0.0), providing comprehensive EEG recordings suitable
for our objectives.

We explored and delivered two machine learning methods: a Support Vector Machine (that showed limited
performance), and a Convolutional Neural Networks (CNNs). We evaluated these models using metrics
such as accuracy, recall, precision, and F1 scores. Our results, summarized in the ‘evaluation’ section, indicate
that the CNN model outperforms the SVM model, achieving an accuracy of 61.05% vs 56.4% on the
classification. Despite not reaching our target accuracy of 70%-75% (from the proposal), we believe that the
effort invested in building and improving the model has provided us with significant theoretical and practical
knowledge, as well as valuable skills in machine learning. This report outlines the various strategies and
approaches we employed to develop and improve the model.

Introduction:.

Before machine learning became widespread, researchers used advanced signal processing techniques like
Continuous Wavelet Transforms (CWT) and Short-Term Fourier Transforms (STFT) to analyze and classify
EEG signals from multiple channels. These methods break down multi-channel EEG signals into
temporal-spatial and frequency components, which help understand how brain signal frequency characteristics
behave and change over time. However, the usage of these tools require manual feature engineering and may
not capture all the complex patterns in the data - and this is where Machine Learning shines.

Machine learning methods do not rely on manually finding features, but are rather algorithms that can
automatically discover feature patterns within the data. In our project, we tried to use support vector machines
(SVM) and Convolutional Neural Networks (CNN) for classifying EEG motor activity. SVM can efficiently handle
high-dimensional feature spaces and is robust to outliers, noise. These merits make SVM a powerful tool for
EEG signal analysis. On the other hand, Convolutional Neural Networks (CNNs) have become powerful tools
for classifying EEG signals. While CNNs aren't specifically designed to capture temporal data sequence
patterns, they can still detect patterns over time and between different EEG channels. To tackle our
classification problem, we started with two CNN architectures inspired by recent academic papers (see
references), and used those models for inspiration to start building our own models.

Data:

Introduction

The dataset utilized in this study is obtained from a collection of 103 subjects, 59 females, 42 males (M:F ratio
~0.71), and 2 unspecified. Ages (available for 93) average ~40.5 years, with most in their 30s or 40s. Each
subject performs various motor and imagery tasks. EEG signals were recorded using 64-channel electrodes
through the BCI 2000 system. After preprocessing, this dataset produced 18,529 distinct labeled data
instances. Each data instance consists of 64 EEG channels with time-domain signal data collected at a
sampling rate of 160 Hz for a duration of 3 starting from motion initiation.

https://openneuro.org/datasets/ds004362/versions/1.0.0

Nov 26, 2024
Preprocessing

The data underwent several preprocessing steps to ensure high-quality input for the models:

1. Data Extraction: The raw data, originally stored in .set files, were extracted using Python libraries
MNE. The EEG signals were then converted into numpy arrays for easier manipulation. Each
experimental run was classified into four distinct tasks based on the event labels (TaskXT0), resulting in
a structured dataset where each instance corresponds to a specific task (Left Fist (T1), Right Fist
(T2), Both Fists (T1), and Both Feet (T2)). After data was segmented and labeled, the final dataset
was stored in HDF5 format for efficient data handling and model input. File size is 2.21 GB.

2. Data Filtering: As most motor/imagery signals typically lie within the frequency bands of delta (0.5-4

Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz), a low-pass filter was applied to eliminate
frequencies above 35 Hz, following recommendations from prior research on motor imagery. This
filtering step was optional, allowing for both filtered and unfiltered versions of the dataset to be used
for CNN model input.

3. Data structure: The input data has 18,529 data instances, each data instance consists of 64 channels
and each channel consists of 480 time series data points. The data was then saved in separate training
and test files (80% train, 10% validation, 10% test).

Data Characteristics

Histogram of Label Occurrences

e Data Balance: The dataset has a relatively balanced
distribution with respect to the four distinct motor/imagery =
tasks: Left Fist, Right Fist, Both Fists, and Both Feet. Here
is the histogram of the Labelled data.

e Data Division: The data was' split into 80% training, 10% i~
testing, and 10% validation sets. Each subject's data was
randomly assigned to these sets to ensure no overlap
between training and testing samples, thereby maintaining
the integrity of the evaluation process. The final dataset
contains approximately 18.5k samples.

In conclusion: the vast dataset of motor/imagery EEG data required a lot of
preprocessing to be ready to be put into any deep learning models. Filtered and
unfiltered versions of the processed dataset were made available for flexibility in
training. The comprehensive preprocessing ensured that the data is clean,
well-structured, and ready for further analysis.

InputLayer

BatchNormalization

Model:

The primary model we used for this project is a CNN specifically designed for analyzing EEG
data. Its architecture is tailored to handle input data of size 64x480 representing 64 EEG
channels and 480 time steps. The model consists of several layers that process the data
step by step to identify meaningful patterns.

BatchNormalization

AveragePoolingZD

Flatten

The first set of layers is made up of 3 parallel 1D temporal convolution layers. These layers
extract features from the time domain, such as spikes, oscillations, and trends within the
EEG signals. The next layer is a spatial convolution layer, which captures relationships
across the 64 EEG channels. This helps the model understand how different regions of the

brain interact. After the convolutions, an average pooling layer reduces the size of the

' Figure from (Ousama, 2024). The figure does not accurately show our CNN model.

Nov 26, 2024
feature maps, making the model computationally efficient while retaining important information.

The processed data is then passed through fully connected layers, which learn higher-level patterns and make
the final classification into one of the four output classes. Dropout is used in the fully connected layers to
prevent overfitting during training, and batch normalization ensures stable and faster learning.

We chose this model because it is well-suited for time-series data like EEG signals, capturing both temporal
and spatial patterns. The architecture was built and fine-tuned through hyperparameter grid search, where we
optimized parameters like learning rate, weight decay, batch size, and dropout rate. This process ensured that
the model performed well without overfitting or underfitting. Further details about the hyperparameter
optimization are provided in the discussion section. The table below outlines how the data is passed through
various layers explaining how its size changes based on the kernel size, number of filters, and other
parameters.

Layer Input Dimension: lOutput Dimension: |Number of Kernels: Kernel Dimension: Stride: Paddings
Conv1lD (num_batches, 64, 480) batch_size, 64, 80) 8 1,8) (1,6) 0,3)
femporal |

Conv1lD (num_batches, 64, 480) batch_size, 64, 80) 8 1,16) (1,6) 0,7)
femporal |

Conv1lD (num_batches, 64, 480) batch_size, 64, 80) 8 1,32) (1,6) 0,15)
temporal

Concatenation |Of the 1st 3 layers batch_size, 24, 64, 80)

IConv2d spatial |(batch_size, 24, 64, 80) batch_size, 40, 1, 80) 40 64, 1) (1,1)

lAvg Pool (batch_size, 40, 1, 80) batch_size, 40, 1, 16) 1,5) (1,5)

Flatten (batch_size, 40, 1, 16) batch_size, 640)

Dense 1 (batch_size, 640) batch_size, 100)

Dropout

Dense 2 (batch_size, 100) batch_size, 4)

In terms of optimization, we chose to use the “Adam” optimizer, which is a variant of Stochastic Gradient
Descent that utilizes momentum (not just simple gradient) for calculating the direction and magnitude to the
next step in the cost function hyperplane. The cost function we used is ‘cross-validation’, as is fitting for a
classification problem.

Evaluation:

Every iteration of training the CNN & SVM model, the performance was compared relative to the last best
model known for each separately. If the new model outperformed the previously best-known model, then the
model parameters, hyperparameters and results were overwritten. In training, 10% of the data (~1800 inputs)
was set aside for testing. Post training, a confusion matrix and evaluation metrics are found from inference on
the test data set.

Overall Accuracy for CNN Model: 61.03% SVM Model: 56.2%

CNN Class 0: Class 1: Class 2: Class 3: Average SVM Class 0: Class 1: Class 2: Class 3: Average
Precision 0.7 0.68 0.59 0.51 62% 0.62 0.81 0.7 0.40 63%
Recall 0.57 0.62 0.62 0.63 58.5% 0.6 0.24 0.71 0.69 56%
F1-Score 0.63 0.65 0.61 0.57 61.5% 0.61 0.38 0.71 0.51 55%
Discussion:

Hyperparameter Optimization
One of the annoying things about deep learning is that there is no standard closed form technique for finding
hyper parameters of a model architecture. While there are several techniques and tools to help with
hyperparameter tuning, we chose to run a grid search on the following parameters:

e 'learning_rate: [0.001, 0.0001],

e 'batch_size". [8, 16],

e 'epochs": [20],

Nov 26, 2024

e 'weight decay': [1e-5, 1e-4],

e 'dropout_rate': [0.5]
Although we did experiment a lot with numbers of kernels (output channels) and kernel dimensions (temporal
and spatial), we did not approach these hyperparameters systematically. We may have been able to further
improve the model by tuning those hyper-parameters systematically as well (kernels per layer [output
channels], kernel sizes, strides, padding, etc.).

Normalization

One of the things we struggled with initially is that our model was giving us only 25% accuracy despite anything
we were trying. After printing the weights being learned from the first layers we noticed quickly vanishing
gradients. A quick search on the internet suggested that our data may not be normalized properly. We thought
that min-max normalization of data between [0,1] would be enough, but it turns out that after normalizing our
data to have mean 0 and standard deviation of 1, our results improved immediately. Normalization of the input
data is extremely important and useful because it prevents the model from needing to learn the initial bias and
variance which may be significantly different between models (but those data properties do not hold the
information needed to identify EEG features). Additionally, we introduced batch normalization layers into the
CNN, which also improved the performance of the model.

Train loss vs Validation loss during training, in between epochs:

Every epoch contains a training session on all data and a validation run on the rest. At the end of every epoch
the following metrics are recorded: Training loss, training accuracy, validation loss, validation accuracy. After all
epochs run the code then plots both - as shown below -

Keeping a close look at these graphs can teach us a lot about the performance of the model.

e Comparing training vs validation:
o Qverfitting: If the training accuracy overshoots the
validation accuracy in some earlier epoch and the | Taiing s alcaton Lo

aining Loss
Validation Loss

training ends with a significant final overshoot, then | N

you can say that the model is training for too many
epochs and it is overfitting the training data. The
response from this may be to limit the number of
epochs or introduce stronger regularization to the

model. This can also mean that the model is not yet
powerful enough to learn complex features from the

data.
o U nderﬁtti n g : If (aS Shown above) the tra i n i ng and o Training and Validation Lossjit:rha‘::z Lis 2o Ei:::‘::(:(\cljrl::tion Accuracy. Batch size: 8
validation are both similar and trending upwards at .. 7

the end of the training, it is safe to say that the model .
may benefit from additional epochs of training. g
o Finally, the ideal picture you want to see is where the =
training accuracy starts lower than the validation, and >~ \

over time until the end of the training the both

0.475 4

converge to the same approximate range.
e Inferring about learning rate from stability:
o If you see in between epochs the loss/accuracy varies greatly and is unstable, that may mean that your
learning rate is too high, and you are overshooting minima points in the cost function and preventing
convergence.

Nov 26, 2024
References:

Tarahi, Ousama & Hamou, Soukaina & Moufassih, Mustapha & Agounad, Said & Hafida, Idrissi Azami.
(2024). Decoding Brain Signals: A Convolutional Neural Network Approach for Motor Imagery
Classification. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 7. 100451.
10.1016/j.prime.2024.100451.

Zhang J, Liu D, Chen W, Pei Z, Wang J. Deep Convolutional Neural Network for EEG-Based Motor Decoding.
Micromachines. 2022; 13(9):1485. https://doi.org/10.3390/mil13091485

The dataset is taken from the OpenNeuro website and has a GitHub repo. The dataset was created by: BCI R&D
Program, Wadsworth Center, New York State Department of Health, Albany, NY.

Link to dataset: https://openneuro.org/datasets/ds004362/versions/1.0.0

https://doi.org/10.3390/mi13091485
https://openneuro.org/datasets/ds004362/versions/1.0.0

