
1

Review ’FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness’

Adin Mauer - Student ID: 43514439

I. SUMMARY

ONE of the main problems with Transformer models
is that they have a large memory footprint and that

footprint increases quadratically relative to sequence length.
While previous attempts to accelarate and optimize Trans-
former models (using sparsity [keyformer], low-rank or other
methods) attempted to improve performance and memory foot-
print by focusing on FLOP reduction, the FlashAttention paper
presents a very successful solution by addressing the memory-
bound elements of the algorithm instead of the compute-
bound components of the algorithm. The reasons transformer
algorithms have become memory-bound instead of compute-
bound are:

1) HMB bandwidth is 1.5-2.0 TB/s while the GPU SRAM
bandwidth is 19.0 TB/s, requiring high arithmetic inten-
sity for efficiency.

2) The standard attention implementation naively requires
Θ(Nd + N2) HBM accesses compared to FlashAtten-
tion’s Θ(N2d2M−1) (note that d2 << M )
FlashAttention does not modify the Transfomer model
architecture, rather it addresses the execution mechanics

of the central operations related to a single layer of a Trans-
former:

Softmax(QKT )V

. Essentially, the optimization uses matrix tiling, kernel
fusion and recomputation to maximize possible IO-aware
locality and arithmetic intensity. matrix tiling and kernel
fusion operations cannot be done in a naive way because
intermediate values are required to compute gradients on the
backward pass, so FalshAttention introduces and small over-
head of O(N) additional memory footprint to keep track of
some local statistics that enable recomputation of the necessary
matrcies on the backward pass (thereby avoiding the need to
send them through HBM to store the matrices in memory).

Beyond this basic notion of IO-aware Attention, the pa-
per extends its optimization by showing that adding Block-
Sparsity to the algorithm improves runtime by a factor that is
proportional to the fraction of non-zero blocks in the sparsity
mask. The runtime improves because there is less computation
and less HBM accesses. With the block-sparse implentation
that number of HBM accesses goes to Θ(Nd+N2d2M−1s),
where s is the fraction of nonzero blocks.

The improvements in FlashAttention provide better run-
times, but they also present an opportunity to improve the
quality of the model. Deep learning models enjoy the rare
quality of improving proportionally to scale, and the smaller
memory footprint for FlashAttention allows for running trans-

formers with longer sequences on the same GPU, making the
model more powerful.

The novelty in the paper comes from the well-rounded ap-
proach to algorithm implementation on hetrogenous comput-
ing. Tiling is a standard accelaration optimization for matrix
multiplcation, and kernel fusion, in this case, is non-trivial
because it required some additional considerations for both
numerical stability and maintaing intermediate statistics for
the backward pass. This kind of appoach, where the algorithm
code is written and tailored to the specific system the code
is running on is important when the runtimes become bound
by the computer/system architecture (and not the algorithm
computation itself).

II. MAIN STRENGTHS

Who will this interest?

Anyone who is only interested in the ML/algorithmic side
of Transformer architecture and algorithms will not find the
insights in this paper of much interest. Alternatively, anyone
who is interested in deploying models that use Transformers
in the real world will definitely be interested in the results
and methods used in this paper. At the point of time of
reading this paper, some tech companies are exploring building
nuclear power plants to power their data-center which train and
deploy their LLMs (transformer models). This in itself is an
expample that shows how likely is it that any imporvement of
performance, runtime, or memory footprint of transformers is
of great interest to many people today.

Strong Results

The strength of the paper really comes from the strong
results which prove directly viability of the FlashAttention
algorithm. It is shown that the memory footprint no longer
scales quadratically with sequence but rather it scales linearly
with FlashAttention. The memory footprint improves 20x in
FlashAttention relative to exact attention (standard attention).
Additionally, it is shown that - on average - the runtime
improves 3x compared to standard attention with common
sequence lengths. The performance of FlashAttention is also
impressive, showinw that it performs on par with standard
attention with similar sequence lengths and improves perfor-
mance with the longer sequence lengths that it can now use.

To evaluate FlashAttention, the model was run with vary-
ing sequence length while measuring runtime and memory-
footprint (number of HBM accesses). Then those metrics were
assessed in the following ways:



2

1) The model runtime and footprint was compared relative
to other implementations (standard attention, approxi-
mate attention, Linformer, etc.)

2) The model was benchmarked against scores like Per-
plexity and Path-X/Path-256. It is notable that FlashAt-
tention is the first model to solve Path-X/Path-256 with
non-random results (61.% accuracy).

III. MAIN LIMITATIONS

The main limitation in the paper is that the implementation
of flash attention is highly system-architecture specific, and
there is no generalized approach to provide a clear API for
every Transformer architecture and every system. This means
that the actual usage of FlashAttention requires significant
engineering work and careful CUDA kernel implementations.
Additionally, although the IO-aware approach seems to be
novel, the fact that it is novel is a weakness. ML researchers
neglect to address the HW/SW interface of their algorithmic
implementations. This approach is only the beginning, and
it is evident because at the time of writing this review
FlashAttention2.0 and 3.0 have been released with further 2x
and 4x average improvements, respectively.

Another more specific limitation is that even though it is
trivial to parallelize several heads in a layer it is unclear how
to parallelize single-head implementations of FlashAttention.
In the algorithm, the matrix blocks/tiles are loopes over in 2
nested loops. It is hard to interpret the nested code as the code
for a potential CUDA kernel because there are dependencies
in between interations of the loop.

IV. IMPROVEMENTS

Some improvements to this paper may include:
1) Parallelize single heads in a layer by using scatter-gather

methods of the local statistics (l and m vectors) and the
O matrix.

2) Include nested tiling to take advantage of multiple
memory hierarchy levels

3) Implement multi-gpu FlashAttention using non-shared
memory parallel programming paradigms (like MPI).


